Benchmark LLMs - LM Harness, FastEval, Flask
LM Harness Benchmarks​
Evaluate LLMs 20x faster with TGI via litellm proxy's /completions
endpoint.
This tutorial assumes you're using the big-refactor
branch of lm-evaluation-harness
NOTE: LM Harness has not updated to using openai 1.0.0+
, in order to deal with this we will run lm harness in a venv
Step 1: Start the local proxy see supported models here
$ litellm --model huggingface/bigcode/starcoder
Using a custom api base
$ export HUGGINGFACE_API_KEY=my-api-key #[OPTIONAL]
$ litellm --model huggingface/tinyllama --api_base https://k58ory32yinf1ly0.us-east-1.aws.endpoints.huggingface.cloud
OpenAI Compatible Endpoint at http://0.0.0.0:8000
Step 2: Create a Virtual Env for LM Harness + Use OpenAI 0.28.1 We will now run lm harness with a new virtual env with openai==0.28.1
python3 -m venv lmharness
source lmharness/bin/activate
Pip install openai==0.28.01 in the venv
pip install openai==0.28.01
Step 3: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
LM Harness requires you to set an OpenAI API key OPENAI_API_SECRET_KEY
for running benchmarks
export OPENAI_API_SECRET_KEY=anything
Step 4: Run LM-Eval-Harness
cd lm-evaluation-harness
pip install lm harness dependencies in venv
python3 -m pip install -e .
python3 -m lm_eval \
--model openai-completions \
--model_args engine=davinci \
--task crows_pairs_english_age
FastEval​
Step 1: Start the local proxy see supported models here
$ litellm --model huggingface/bigcode/starcoder
Step 2: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
Set this to anything since the proxy has the credentials
export OPENAI_API_KEY=anything
Step 3 Run with FastEval
Clone FastEval
# Clone this repository, make it the current working directory
git clone --depth 1 https://github.com/FastEval/FastEval.git
cd FastEval
Set API Base on FastEval
On FastEval make the following 2 line code change to set OPENAI_API_BASE
https://github.com/FastEval/FastEval/pull/90/files
try:
api_base = os.environ["OPENAI_API_BASE"] #changed: read api base from .env
if api_base == None:
api_base = "https://api.openai.com/v1"
response = await self.reply_two_attempts_with_different_max_new_tokens(
conversation=conversation,
api_base=api_base, # #changed: pass api_base
api_key=os.environ["OPENAI_API_KEY"],
temperature=temperature,
max_new_tokens=max_new_tokens,
Run FastEval
Set -b
to the benchmark you want to run. Possible values are mt-bench
, human-eval-plus
, ds1000
, cot
, cot/gsm8k
, cot/math
, cot/bbh
, cot/mmlu
and custom-test-data
Since LiteLLM provides an OpenAI compatible proxy -t
and -m
don't need to change
-t
will remain openai
-m
will remain gpt-3.5
./fasteval -b human-eval-plus -t openai -m gpt-3.5-turbo
FLASK - Fine-grained Language Model Evaluation​
Use litellm to evaluate any LLM on FLASK https://github.com/kaistAI/FLASK
Step 1: Start the local proxy
$ litellm --model huggingface/bigcode/starcoder
Step 2: Set OpenAI API Base & Key
$ export OPENAI_API_BASE=http://0.0.0.0:8000
Step 3 Run with FLASK
git clone https://github.com/kaistAI/FLASK
cd FLASK/gpt_review
Run the eval
python gpt4_eval.py -q '../evaluation_set/flask_evaluation.jsonl'
Debugging​
Making a test request to your proxy​
This command makes a test Completion, ChatCompletion request to your proxy server
litellm --test